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Abstract
The periodic undulation of a molten track’s height profile in laser-based powder bed fusion of
metals (PBF-LB/M) is a commonly observed phenomena that can cause defects and building
failure during the manufacturing process. However a quantitative analysis of such instabilities
has not been fully established and so here we used Rayleigh–Plateau theory to determine the
stability of a single molten track in PBF-LB/M and tested it with various processing conditions
by changing laser power and beam shape. The analysis discovered that normalized enthalpy,
which relates to energy input density, determines whether a molten track is initially unstable and
if so, the growth rate for the instability. Additionally, whether the growth rate ultimately yields
significant undulation depends on the melt duration, estimated by dwell time in our experiment.

Supplementary material for this article is available online
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1. Introduction

Laser-based powder bed fusion of metals (PBF-LB/M), an
additive manufacturing technique, has been widely used in
aerospace, automotive, and many other industries due to its
ability to easily manufacture products. In the conventional
PBF-LB/M process, a small Gaussian laser beam (<100 µm
in diameter) is used to melt a thin layer of powder. Sufficient
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energy is delivered so that the molten pool extends to previ-
ously fused material or the substrate beneath. By repeating
this process in a layer-by-layer fashion, a 3D part is produced.
The laser scanning speed—and hence the overall productivity
of PBF-LB/M—is limited by several defects arising at higher
speeds, including the humping or balling phenomenon, a peri-
odic undulation of molten tracks.

Such periodic undulation had been documented in laser-
based manufacturing processes before. Bradstreet first repor-
ted the formation and geometry of periodic weld beads in
laser welding [1]. Gratzke et al proposed to use the Rayleigh–
Plateau instability of a liquid jet to explain this phenomenon
[2]. Subsequent research in laser welding discovered that
flow inside the molten pool contributes to the undulation
[3]. Numerical simulations were also developed to estimate
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processing conditions where such undulation arises [4–6].
Generally speaking, periodic undulation exists at a high laser
welding speed, where an elongated molten pool is more sus-
ceptible to capillary instability.

Recently, humping was observed in the PBF-LB/M pro-
cess as well [7, 8]. Besides at a high laser scanning speed
[9], the undulation emerges under other processing conditions,
including those with small laser beam powers [10] and mod-
ified, non-Gaussian laser beams [11, 12]. The undulation can
be amplified by repeated powder deposition and scanning in
the printing process, and it has been correlated with defects in
PBF, including cracks, high surface roughness, and sometimes
complete building failures. It is believed that poor wettability
and the resulting large contact angle between the molten track
and the substrate contributed to the undulation [13, 14].

However, while previous studies focused on the critical
condition where periodic undulation arises during welding and
PBF-LB/M, they overlook how geometric properties (such as
wavelength and amplitude) of the undulation in the molten
track can be associated with—and potentially be controlled
by—processing conditions. Therefore, in this work, we used
a self-built dual-laser system to further investigate the undula-
tion with an expanded parameter space; two laser beams that
overlap or operate in close proximity are effectively used as a
single beam whose shape is adjustable. We examined a mod-
ified, quasi-one-dimensional (1D) Rayleigh–Plateau instabil-
ity model in PBF-LB/M and found that the wavelength and
perturbation growth rate of an unstable molten track can be
described by the dispersion relation. A parameter, the nor-
malized enthalpy, which relates to the input energy density,
presents data points acquired under different processing con-
ditions in the same context and links the processing conditions
to the instability criteria. A smaller normalized enthalpy gen-
erally leads to a larger contact angle between the molten track
and the substrate, therefore resulting in an unstable initial state.
Furthermore, we show that in our configuration, the dwell time
together with the perturbation growth rate from the dispersion
relation determines whether a perturbation can grow signific-
antly should the molten track start from an unstable initial
state.

2. Experimental methods

Experiments were carried out in a dual-laser PBF-LB/M sys-
tem developed in-house. The detailed description can be found
in previous literature [15]. In these experiments, two identical
laser beams with powers P at 40, 60, 80, and 100 W were
used. Scan speed was held constant at 150 mm s−1. The nom-
inal 1/e2 diameter, σ, of the laser beam was 100 µm. A
100 µm thick layer of 316L stainless steel powder with dia-
meter <44 µm was deposited with a doctor blade on a 316L
substrate.

Figure 1 illustrates the methods and observations in
this experiment. Two molten pools, as shown in orange in
figure 1(a), were created by two laser beams whose scan paths
converged onto the same 4.5 mm long main line, resulting in a
single molten track. Short ramps measuring 1.27 mm in length

Figure 1. Overview of experimental methods, with (a) position of
molten pools and tracks created during the experiments, (b) and
(c) illustrations of molten tracks with small contact angles and low
amplitudes, with the red lines representing the molten pool
boundary, (d) confocal image of such a molten track, (e) and
(f) illustrations of molten tracks with large contact angles and high
amplitudes, (g) confocal image of such a molten track, and
(h) height profile extracted from confocal measurement for the
molten track shown in (g). Wavelength λ and amplitude A are
defined as shown in image (h). Molten pools in (a) are not to scale.

and angled 11◦ from the main line were included to avoid sud-
den start or stop of the molten track, which may introduce
uncertainties to the track formation. On the main line, the two
laser spots were separated by a spatial offset l, which is con-
trolled by the scan speed v and the temporal offsets between
the firing of two lasers∆t, as l=∆t× v. A set of experiments
with single lasers were included for reference. The length of
a molten pool is between 150 and 300 µm for a single laser
beam with a power between 40 and 100 W at 150 mm s−1

scan speed.
Figures 1(b)–(g) describe two scenarios of molten tracks

in our experiments. Figures 1(b)–(d) depict the result where
the molten track made a small contact angle (<90◦) with
the substrate and undulated with relatively small amplitude.
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Figure 2. Cross-section of the molten tracks, with (a) optical image
of a cross-section after polishing and etching, and (b) the schematic
diagram for the molten track and molten pool. Variables such as
molten track height m(x), molten pool depth d, contact angle θ (x),
constant contact length b are shown in (c) and (d), while (c) is the
schematic of unstable track with θ > 90◦, and (d) stable track with
θ < 90◦. R(x) is the radius of the approximated segmented circle
for the molten track, as shown in (e) and (f). Gray areas in (c) and
(d) represent the cross-section area S in equation (4).

Figure 1(b) illustrates the conditionwhere the powder particles
were first melted and the track had not solidified yet, while
figure 1(c) is where the track was fully solidified and bonded
to the substrate. Figure 1(d) is a confocal image of a molten
track with such condition. On the other hand, figures 1(e) and
(f) represent the beginning and end of a molten track solid-
ification where the contact angle between the track and the
substrate is large (>90◦). The resulting molten track undu-
lated with a large amplitude, as shown in the schematic figure
(figure 1(f)) and confocal image (figure 1(g)). Figure 1(h) is
the height profile from confocal image (figure 1(g)), with amp-
litude A and wavelength λ defined. Among these geometric
parameters, amplitude A is the most important as it directly
represents the significance of the undulation. Besides that, a
higher energy input leads to longer contact length b and gener-
ally, smaller contact angle θ, which are important to the initial
stability of the molten track as described below in section 3.2.

After each experiment, a confocal image of each molten
track was taken. Height profiles from confocal images were
used to calculate the wavelength λ and amplitude A for each
molten track. After being cut, polished, and etched, cross-
sections of each sample were imaged using an optical micro-
scope to determine the molten pool depth and contact length
between the track and the substrate, as shown in figure 2. Con-
tact length b and molten pool depth d are measured for each
molten track, while bead height m and contact angle θ from
the cross-section images are not recorded because these vari-
ables change along an unstable molten track and results from a
single slice are not representative. Instead, height profile m(x)
is collected from the confocal image and contact angle θ (x)
is calculated as described in section 3.2. Results on the mol-
ten pool depth d are not presented in this project as previous
literature has covered it well [16].

3. Results and discussions

3.1. Wavelength and amplitude at various laser powers and
spatial offsets

Figure 3 shows the wavelength and amplitude at various spa-
tial offsets and laser powers. Values for power in the plot refer
to the power of a single laser. The standard deviation is rep-
resented using shaded bands to enhance clarity.

From figure 3(a), we notice that wavelength does not
change significantly with spatial offset l at a constant laser
power. For example, wavelength remains constant between
600 and 700 µm for 40 W power inputs, even though the
spatial offset increases from 0 to 300 µm. At the same time,
wavelength increases from around 600 µm to around 1100 µm
as laser power increases from 40 W to 100 W. This can
be explained by approximating the molten track as a free-
standing cylinder with radius R. The wavelength must exceed
the circumference of the cylinder, i.e.

λ > 2πR, (1)

so that instability commences and perturbation begins to grow
[17]. A higher-powered laser beam creates a molten track with
larger radius and consequently greater circumference. There-
fore, it is expected that wavelength increases with higher laser
power.

More interestingly, the amplitudes vary significantly with
varying spatial offsets, as shown in figure 3(b). The amplitude
increases at specific spatial offsets 100< l< 200µm for 40
and 60 W laser power, and between 120< l< 270µm for
80 W laser power. At the same time, the amplitude is nearly
constant for 100 W laser power. Here, we consider these mol-
ten tracks with low amplitudes (or more precisely, low ratio
between amplitude andwavelength,A/λ < 0.013 as explained
in section 3.2) as stable ones. Roughly speaking, unstable mol-
ten tracks exist because when the spatial offset increases from
0 to ∼150 µm, the energy density decreases as the effect-
ive shape of the combined beam becomes elongated. Con-
sequently, a shorter contact length between the molten track
and the substrate is created. The larger contact angle that res-
ults from this leads to larger undulations. The detailed explan-
ation is provided in the next section. As the two spots are fur-
ther separated (l becomes larger than 200 µm), the two molten
pools cease to remain connected. In such a case, the amplitude
drops as the melting process is no longer different from using
one laser beam to scan a single line twice, as the lagging beam
can remelt and smoothen the molten track.

3.2. Stability analysis with Rayleigh–Plateau theory

To further probe this instability, we turned toward the
Rayleigh–Plateau instability of a liquid jet with infinite length.
In specific, we consider the molten track as a liquid bead sus-
pended on a flat surface, similar to some previous fluids mod-
els [18–20]. In such case, the original cylindrical system is
modified with a quasi-1D model for a cylinder segmented on a
flat surface. The equations for motion and mass conservation
are:

3
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Figure 3. (a) Wavelength and (b) amplitude of the undulations at various spatial offsets and laser powers. Shaded area represents the
standard deviation. Power values in the legend each refer to the output of a single laser. l on the x-axis is the spatial offset between the two
laser spots, as shown in figure 1(a).

ρ

(
∂u
∂t

+ u
∂u
∂x

)
=−∂p

∂x
(2)

and

∂S
∂t

+ u
∂S
∂x

=−S∂u
∂x

, (3)

where S is the molten track’s cross-sectional area as shown in
figure 2, u the flow velocity, t time, ρ the material density, and
p the pressure inside of the molten track.

To approximate the cross-sectional area of a molten track,
we treat the cross-section as a circular segment. A geometrical
analysis gives

S=
m2 (θ− sinθcosθ)

(1− cosθ)2
, (4)

where m is the bead height from confocal measurement as
sketched in figure 2, and θ is the contact angle calculated using
the equation

R=
m

1− cosθ
=

b
2sinθ

, (5)

where R is the radius of the circular segment modeled from
the cross-section, and b is the contact length. Illustrations for
variables R, θ, and b are shown in figure 2. For each molten
track, we assume the contact length b is constant, as suggested
in literature [21].

With m(x) collected from confocal measurement, S(x) can
be calculated using m(x) and b .S(x) is then integrated and
averaged over a period of length λ to find the mean cross-
sectional area S̄ for each molten track, as shown below

S̄=
1
λ

λˆ
S(x)d(x) . (6)

Therefore, we can estimate the original, unperturbed shape
of the circular segment, which translates to the melting volume
(when S̄ is integrated over track length).

Then the capillary pressure at position x can be written as

p= γ (1/R+ 1/R ′) , (7)

where γ is the surface tension, R computed from equation (5),
and 1/R ′ is the average value of the longitudinal curvature
of the molten track. The longitudinal curvature can be further
simplified as shown below, according to Schiaffino [22]

1/R ′ ≈−β∂2h/∂x2, (8)

where −∂2h/∂x2 is the curvature of the surface over the
centerline. β is a coefficient that accounts for the difference
between the longitudinal curvature over the centerline and the
average longitudinal curvature, as suggested from literature
[20, 22]. Based on literature [20, 22], β is between 0.65 and
0.56 when 0.42 π < θ < 0.86 π, which is the range of the con-
tact angle in our work.

Now with the bead’s height along the x-axis and over time
t approximated as

h= h0 + ϵeωt+ikx, (9)

where h0 is the unperturbed height, ϵ the initial perturbation,
k= 2π/λ is the wave number, ω is the growth rate of the per-
turbation, and h at t= solidification time is equivalent to the
measured height profile m(x). The unperturbed height is the
height of a homogeneous molten track before the instability
grows (height of the uniform bead with cross-section area S̄).
The initial state of a molten track is shown in figures 1(b)
and (e).
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Then the dispersion relation is shown below, using
equations (2), (3), (5) and (7) after substituting equations (8)
and (9):

2ρh30ω
2

γ

=
(kh0)

2 [
θ̄− sin θ̄ cos θ̄

][
cos θ̄

(
cos θ̄− 1

)
−β(kh0)

2
]

sin θ̄− θ̄ cos θ̄
(10)

as detailed derivation can be found in the previous literature
[22]. Here, θ̄ describes the contact angle of a homogeneous
molten track at the unperturbed state with a cross-section area
of S̄. Thus, θ̄ is constant for each molten track. This is in con-
trast to θ (x), the contact angle of the solidified molten track
as shown in figure 2, which is a function of x and can be cal-
culated based on height profile m(x) and contact length b. On
the other hand, θ̄ is calculated from the geometry relations in
equation (5) after S̄ is determined.

For the molten track to be unstable, ω must be real. This
condition, applied to equation (10), gives

(kh0)
2
> cos θ̄

(
cos θ̄− 1

)
/β, (11)

which suggests that the instability can only arise at a large con-
tact angle when θ̄ > π/2.

From the dispersion relationship in equation (10), one can
also find the most rapidly growing wave number k* with the
corresponding growth rate ω*, as shown below [20]:

(k*h0)
2
=

cos θ̄
(
cos θ̄− 1

)
(2β)

(12)

ρh30ω
2
*

γ
=

cos2 θ̄
(
cos θ̄− 1

)2 (
θ̄− sin θ̄cos θ̄

)
8β

(
sin θ̄− θ̄ cos θ̄

) . (13)

Figure 4 plots the stable and unstable regions based on
equations (11) and (12). h0, the unperturbed bead height can be
calculated from the averaged cross-sectional area S̄ and fixed
contact length b based on geometry correlations. Empty data
points represent unstable molten tracks while filled ones for
the stable tracks. In this work, a molten track is deemed stable
if A/λ < 0.013. This threshold is chosen to best distinguish
stable molten tracks upon visual inspection of all confocal
images. Afterwards, data points are grouped based on their
stability and the processing conditions in figure 3. Data points
of Gaussian represent the experiments with a single Gaussian
beam at various laser powers. An unstable region exists in
figure 3 because for contact angle θ̄ > π/2, the internal pres-
sure moves liquid from lower h(x) to higher h(x), thus grow-
ing the perturbation.

We notice that the results from molten tracks mostly fol-
low the stability analysis in figure 4, suggesting a good align-
ment between the Rayleigh–Plateau instability theory and our
experimental results. For example, many molten tracks pro-
duced by 100 W laser power remain in the stable regime,
aligning with the observation from figure 3 in which 100 W

Figure 4. Stability map for molten tracks at different processing
conditions. The empty data points represent unstable molten tracks
and filled ones for stable tracks. The stability boundary is derived
from equation (11) and fastest-growth wavelength from equation
(12).

laser produces tracks with long wavelength but small amp-
litude. Onemay find that the stable data points (filled points) in
figure 4 still carry finite wavelengths, while unperturbed mol-
ten tracks should have infinite wavelength and h0/λ= 0. This
is because small ripples are difficult to avoid in PBF/LB-M
and these molten tracks with small ripples are deemed stable
based on our stability threshold. In summary, we think the
trend between h/λ0 and θ̄ follows the dispersion relation from
linear stability analysis nicely.

From analysis above, we notice that the contact angle θ̄ is
vital in determining the stability of the molten track: a contact
angle greater than π/2 introduces growing perturbations. To
correlate the contact angle to the processing parameters, we
first normalize energy input with enthalpy at melting, hs, sim-
ilarly to previous literature [16, 23] to present all data from
this work in the same context. In this case, hs = ρcTm, where
c is the specific heat capacity and Tm the melting temperat-
ure. We approximate the combined laser beam in this exper-
iment as an elliptical beam, with a semi-major axis length
(σ+ l)/2 and a semi-minor axis length σ/2, similarly to our
previous work [24]. With a dwell time τ ∼ (σ+ l)/(2v) pro-
portional to the length of the major axis of the combined ellipt-
ical beam, the laser energy absorbed is AbPτ , where Ab is
the absorptivity, and P is the total laser power input. This
energy is distributed in a volume of π (σ/2) [(σ+ l)/2]

√
Dτ ,

where D is thermal diffusivity. This gives an energy density of

AbPτ
{
π (σ/2) [(σ+ l)/2]

√
Dτ

}−1
. Normalizing the energy

density by the melting enthalpy and following the same modi-
fication as in previous literature [16, 25], we have the normal-
ized enthalpy∆H/hs as

∆H
hs

=
AbPτ

hs (σ/2)(σ/2+ l/2)
√
πDτ

, (14)
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Figure 5. Contact angle θ̄ between molten track and substrate vs
normalized enthalpy. The filled data points represent stable molten
tracks and empty ones for unstable tracks.

where

hs = ρcTm, (15)

and

τ =
σ+ l
2v

. (16)

.Figure 5 plots the averaged contact angle θ̄ against normalized
enthalpy, which describes the amount of energy density above
that required to melt the material. It is clear that, as data points
from various laser powers and beam shapes collapse into the
same trend, contact angle decreases with increasing normal-
ized enthalpy. Therefore, we observe more instability in lower
laser power experiments as shown in figure 3, because lower
laser power and consequently lower normalized enthalpy tend
to create greater contact angles and introduce growing perturb-
ations to a molten track, with the reasoning provided below.

From figure 2 and geometry correlations, contact angle
between the molten track and the substrate clearly depend on
(a) the contact length between the liquid bead and the sub-
strate, and (b) the volume of liquid accrued on the substrate
(gray area in figure 2). A small contact length together with
a large volume of liquid accrued is more likely to yield a
large contact angle and therefore a strong instability and undu-
lation with a higher amplitude. First, we discover that con-
tact line length increases continuously with increasing normal-
ized enthalpy (see supplementary materials figure S1 available
online at stacks.iop.org/IJEM/4/015201/mmedia). At the same
time, experimental data reveal that while changing beam shape
can impact the liquid accrued when the laser power is constant,
the volume of liquid accrued will reach a plateau with increas-
ing power and normalized enthalpy (see supplementary mater-
ials figure S2) because only a finite volume of powder is depos-
ited and available for melting. Therefore, a higher normalized
enthalpy cannot continuously increase the melting volume of

Figure 6. Fastest growth rate ω∗ vs the normalized enthalpy. Only
unstable data are plotted as ω∗ for stable tracks does not exist.

a molten track, but it can continuously increase the contact
length between the molten track and the substrate. Thus, con-
tact angle decreases with increasing energy input and intro-
duces less amplitude growth.

3.3. Amplitude dependency on perturbation growth

With the stability criteria established in the previous sections,
we now turn to the understanding of the correlation between
the Rayleigh–Plateau instability and the resulting amplitude
of the undulations. Theory only predicts a growth rate for
the perturbations, and the molten track can ultimately break
into small droplets to minimize its surface energy should the
growth time be infinite. However, molten tracks solidify within
a finite period of time in our PBF-LB/M experiment, prevent-
ing the perturbations from further growing. Thus, in additional
to the perturbation growth rate from the dispersion relation,
we need a time scale to represent the solidification time for a
more comprehensive understanding towards the amplitude of
the undulations.

Figure 6 plots the fastest growth rate for perturbations
versus normalized enthalpy. Only tracks deemed unstable are
plotted as stable tracks do not have ω*. We calculate the fast-
est growth rate ω* from equations (5) and (13). Generally
speaking, ω* decreases with increasing normalized enthalpy.
In particular, the growth rate drops rapidly for ∆H/hs >
10, a domain inhabited primarily by data points from the
100 W laser power experiments. Such domain corresponds
to the small oscillations which generates small undulations
in figure 3. As we discussed earlier, these molten tracks
receive high energy input so their molten pools can extend
deeply into the substrate, resulting in large contact length,
small contact angle, and slower perturbation growth. Con-
versely, decreased normalized enthalpy leads to shortened
contact length, enlarged contact angle, and accelerated per-
turbation growth.

6

https://stacks.iop.org/IJEM/4/015201/mmedia


Int. J. Extrem. Manuf. 4 (2022) 015201 W Zhang et al

Figure 7. The ratio between amplitude A and wavelength λ vs the
fastest growth rate ω∗ times dwell time τ . Only unstable data are
plotted as ω∗ for stable tracks does not exist. Dash line represents
the empirical A/λ= 0.013 threshold.

Figure 7 plots the ratio between amplitude A and
wavelength λ versus the perturbation growth, a dimension-
less number obtained by multiplying growth rate ω* and a
time scale, chosen to be the dwell time τ from equation (16).
Figure 7 shows that there exists a clear threshold value for
ω*τ near unity, below which the amplitude of the undula-
tion remains low at around 0.015 of the wavelength λ. Once
ω*τ exceeds the threshold, the ratio between amplitude and
wavelength grows rapidly with increasing ω*τ . The greatest
A/λ ratios are seen at lower laser powers, where the growth
rate ω* is very large compared to those at higher laser powers,
allowing the undulation to grow to a greater amplitude before
solidification. As A∼ eωt and A∼ ω*τ at small τ , a faster
growth rate together with a longer melting duration from a
longer dwell time can lead to rapid growth of amplitude.

Here, we recognize that dwell time cannot precisely repres-
ent the time scale, as dwell time is only affected by the spa-
tial offset l, with speed v being constant in our experiment. In
reality, higher laser powers should create longer molten pools
(the length of a liquid bead along the x-axis) for constant l and
v. A solidification time, calculated from observed molten pool
length divided by laser scan speed, can be amore accurate time
scale, but it is more difficult to measure. Nonetheless, scal-
ing with ω*τ still does well to collapse datasets from various
laser powers and different beam shapes into a single pattern in
figure 7.

4. Conclusions

In this work, molten tracks with various wavelengths and amp-
litudes were produced using PBF-LB/M with laser beams at
different powers and shapes. While wavelengths remain rel-
atively unaffected by different beam shapes, i.e. at different
spatial offsets, the amplitudes vary significantly with the beam
shape and laser power. Using a geometric idealization and
the Rayleigh–Plateau instability model, we provided a simple

explanation and scaling approach for the undulations observed
in PBF-LB/M. Even with strong fluid motion associated with
this process, especially in the molten pool, the stability of the
molten track and the resulting amplitude can be explained and
estimated with the fluid model.

Specifically, we found that the contact angle alone between
the molten track and the substrate determines the stability
of the track, and if unstable, the wavelength and amplitude
growth rate is predicted by the dispersion correlation. The con-
tact angle itself is determined by the contact length and liquid
accrued, both correlated with the normalized enthalpy. The
amplitude is shown to correlate with both the growth rate ω*

and dwell time τ : ω*τ has to reach a certain threshold, unity in
our case, for the amplitude to become significant, after which
the amplitude grows with increasing ω*τ . In short, normalized
enthalpy (driven primarily by laser power density) determ-
ines, via contact angle, whether the molten track is initially
unstable, and if so, the perturbation growth rate. Whether the
growth rate yields significant undulation depends additionally
on themelt duration, which in our case the dwell time τ (driven
by spatial offset between laser spot positions) serves as a good
estimate. Therefore, a thick powder layer resulting in a short
contact length is more likely to create undulations. At the same
time, a longer molten pool, for instance, due to fast laser scan
speed or an elliptical beam moving along its major axis can
lead to undulations as well.
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